现有域适应(DA)算法训练目标模型,然后使用目标模型对目标数据集中的所有样本进行分类。虽然这种方法试图解决源和目标数据来自不同分布的问题,但它无法认识到目标域内的可能性,某些样本比目标域更接近源域的分布领域。在本文中,我们开发了一种新颖的DA算法,即强制转移,该算法涉及这种情况。解决这一难题的一个直接但有效的想法是,使用分布外检测算法来决定在测试阶段,给定样品是否更接近源域,目标域或两者都不接近。在第一种情况下,该样本将提供给对源样本培训的机器学习分类器。在第二种情况下,该样本将提供给对目标样本训练的机器学习分类器。在第三种情况下,该样本被丢弃,因为既不是在源训练的ML模型,也不是在目标上训练的ML模型不适合对其进行分类。众所周知,神经网络中的前几个层提取了低级特征,因此可以从三种不同情况下对样品进行分类,以在三种不同情况下经验确定的层后进行样品的激活分类。强制转移实现了这个想法。在三种类型的DA任务上,我们优于与之相比的最新算法。
translated by 谷歌翻译
Logic Mill is a scalable and openly accessible software system that identifies semantically similar documents within either one domain-specific corpus or multi-domain corpora. It uses advanced Natural Language Processing (NLP) techniques to generate numerical representations of documents. Currently it leverages a large pre-trained language model to generate these document representations. The system focuses on scientific publications and patent documents and contains more than 200 million documents. It is easily accessible via a simple Application Programming Interface (API) or via a web interface. Moreover, it is continuously being updated and can be extended to text corpora from other domains. We see this system as a general-purpose tool for future research applications in the social sciences and other domains.
translated by 谷歌翻译
The task of reconstructing 3D human motion has wideranging applications. The gold standard Motion capture (MoCap) systems are accurate but inaccessible to the general public due to their cost, hardware and space constraints. In contrast, monocular human mesh recovery (HMR) methods are much more accessible than MoCap as they take single-view videos as inputs. Replacing the multi-view Mo- Cap systems with a monocular HMR method would break the current barriers to collecting accurate 3D motion thus making exciting applications like motion analysis and motiondriven animation accessible to the general public. However, performance of existing HMR methods degrade when the video contains challenging and dynamic motion that is not in existing MoCap datasets used for training. This reduces its appeal as dynamic motion is frequently the target in 3D motion recovery in the aforementioned applications. Our study aims to bridge the gap between monocular HMR and multi-view MoCap systems by leveraging information shared across multiple video instances of the same action. We introduce the Neural Motion (NeMo) field. It is optimized to represent the underlying 3D motions across a set of videos of the same action. Empirically, we show that NeMo can recover 3D motion in sports using videos from the Penn Action dataset, where NeMo outperforms existing HMR methods in terms of 2D keypoint detection. To further validate NeMo using 3D metrics, we collected a small MoCap dataset mimicking actions in Penn Action,and show that NeMo achieves better 3D reconstruction compared to various baselines.
translated by 谷歌翻译
Neural compression offers a domain-agnostic approach to creating codecs for lossy or lossless compression via deep generative models. For sequence compression, however, most deep sequence models have costs that scale with the sequence length rather than the sequence complexity. In this work, we instead treat data sequences as observations from an underlying continuous-time process and learn how to efficiently discretize while retaining information about the full sequence. As a consequence of decoupling sequential information from its temporal discretization, our approach allows for greater compression rates and smaller computational complexity. Moreover, the continuous-time approach naturally allows us to decode at different time intervals. We empirically verify our approach on multiple domains involving compression of video and motion capture sequences, showing that our approaches can automatically achieve reductions in bit rates by learning how to discretize.
translated by 谷歌翻译
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In particular, there are not nearly as many SLU task benchmarks, and many of the existing ones use data that is not freely available to all researchers. Recent work has begun to introduce such benchmark datasets for several tasks. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. We follow the blueprint of the Spoken Language Understanding Evaluation (SLUE) benchmark suite. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will be publishing for each task (i) annotations for a relatively small fine-tuning set, (ii) annotated development and test sets, and (iii) baseline models for easy reproducibility and comparisons. In this work, we present the details of data collection and annotation and the performance of the baseline models. We also perform sensitivity analysis of pipeline models' performance (speech recognizer + text model) to the speech recognition accuracy, using more than 20 state-of-the-art speech recognition models.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
Self-supervised pre-trained transformers have improved the state of the art on a variety of speech tasks. Due to the quadratic time and space complexity of self-attention, they usually operate at the level of relatively short (e.g., utterance) segments. In this paper, we study the use of context, i.e., surrounding segments, during fine-tuning and propose a new approach called context-aware fine-tuning. We attach a context module on top of the last layer of a pre-trained model to encode the whole segment into a context embedding vector which is then used as an additional feature for the final prediction. During the fine-tuning stage, we introduce an auxiliary loss that encourages this context embedding vector to be similar to context vectors of surrounding segments. This allows the model to make predictions without access to these surrounding segments at inference time and requires only a tiny overhead compared to standard fine-tuned models. We evaluate the proposed approach using the SLUE and Librilight benchmarks for several downstream tasks: Automatic speech recognition (ASR), named entity recognition (NER), and sentiment analysis (SA). The results show that context-aware fine-tuning not only outperforms a standard fine-tuning baseline but also rivals a strong context injection baseline that uses neighboring speech segments during inference.
translated by 谷歌翻译
Recent neural compression methods have been based on the popular hyperprior framework. It relies on Scalar Quantization and offers a very strong compression performance. This contrasts from recent advances in image generation and representation learning, where Vector Quantization is more commonly employed. In this work, we attempt to bring these lines of research closer by revisiting vector quantization for image compression. We build upon the VQ-VAE framework and introduce several modifications. First, we replace the vanilla vector quantizer by a product quantizer. This intermediate solution between vector and scalar quantization allows for a much wider set of rate-distortion points: It implicitly defines high-quality quantizers that would otherwise require intractably large codebooks. Second, inspired by the success of Masked Image Modeling (MIM) in the context of self-supervised learning and generative image models, we propose a novel conditional entropy model which improves entropy coding by modelling the co-dependencies of the quantized latent codes. The resulting PQ-MIM model is surprisingly effective: its compression performance on par with recent hyperprior methods. It also outperforms HiFiC in terms of FID and KID metrics when optimized with perceptual losses (e.g. adversarial). Finally, since PQ-MIM is compatible with image generation frameworks, we show qualitatively that it can operate under a hybrid mode between compression and generation, with no further training or finetuning. As a result, we explore the extreme compression regime where an image is compressed into 200 bytes, i.e., less than a tweet.
translated by 谷歌翻译
What is a rose, visually? A rose comprises its intrinsics, including the distribution of geometry, texture, and material specific to its object category. With knowledge of these intrinsic properties, we may render roses of different sizes and shapes, in different poses, and under different lighting conditions. In this work, we build a generative model that learns to capture such object intrinsics from a single image, such as a photo of a bouquet. Such an image includes multiple instances of an object type. These instances all share the same intrinsics, but appear different due to a combination of variance within these intrinsics and differences in extrinsic factors, such as pose and illumination. Experiments show that our model successfully learns object intrinsics (distribution of geometry, texture, and material) for a wide range of objects, each from a single Internet image. Our method achieves superior results on multiple downstream tasks, including intrinsic image decomposition, shape and image generation, view synthesis, and relighting.
translated by 谷歌翻译
We present a new method for generating controllable, dynamically responsive, and photorealistic human animations. Given an image of a person, our system allows the user to generate Physically plausible Upper Body Animation (PUBA) using interaction in the image space, such as dragging their hand to various locations. We formulate a reinforcement learning problem to train a dynamic model that predicts the person's next 2D state (i.e., keypoints on the image) conditioned on a 3D action (i.e., joint torque), and a policy that outputs optimal actions to control the person to achieve desired goals. The dynamic model leverages the expressiveness of 3D simulation and the visual realism of 2D videos. PUBA generates 2D keypoint sequences that achieve task goals while being responsive to forceful perturbation. The sequences of keypoints are then translated by a pose-to-image generator to produce the final photorealistic video.
translated by 谷歌翻译